

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 175 (2003) 353-358

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Metal–ligand bonding and rutile- versus CdI₂-type structural preference in platinum dioxide and titanium dioxide

C. Soulard,^a X. Rocquefelte,^a S. Jobic,^{a,*} D. Dai,^b H.-J. Koo,^b and M.-H. Whangbo^{b,*}

^a Laboratoire de Chimie des Solides, Institut des Matériaux Jean Rouxel, UMR 6502, 2 rue de la Houssinière, B.P. 32229,

^b Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

Received 24 February 2003; received in revised form 15 May 2003; accepted 30 May 2003

Abstract

First principles electronic structure calculations were carried out to determine the relative stabilities of the rutile- and CdI₂-type structures of platinum dioxide (PtO₂) and titanium dioxide (TiO₂). The orbital interactions between the transition metal *d*- and oxygen *p*-orbitals were analyzed to gain insight into why PtO₂ has both the rutile- and CdI₂-type structures, but TiO₂ has only the rutile-type structure. The cause for the large difference in the c/a ratios of the CdI₂-type structures of TiO₂ and PtO₂ was examined. © 2003 Elsevier Inc. All rights reserved.

1. Introduction

What electronic factors are responsible for a transition metal dioxide MO_2 to adopt a three-dimensional (3D) or a two-dimensional (2D) layered structure is an interesting and important question. The rutile-type structure is one of several 3D structures that MO₂ can have. In this structure the MO_6 octahedra form edgesharing MO_4 chains Fig. 1a, these chains are condensed such that the apical oxygen atoms of one MO_4 chain become the equatorial oxygen atoms of two adjacent MO_4 chains Fig. 1b, and every four MO_4 chains form a 1D channel Fig. 1c. In the CdI₂-type layered structure, edge-sharing MO_6 octahedra Fig. 2a form MO_2 layers, and these layers are stacked to form a 3D structure Fig. 2b so that the sheets of oxygen atoms face each other between the layers. Platinum dioxide (PtO2) has both the CdI₂-type (α -PtO₂, regular form) [1] and the rutile-type (β -PtO₂, high-pressure form) [2] structures, whereas titanium dioxide (TiO₂) has only the rutile structure [3].

Binary oxides of highly electropositive transition metal elements are strongly ionic and adopt 3D structures in which repulsion between O^{2-} anions is reduced. Low-dimensional oxide structures are stabi-

*Corresponding author. Fax: +1-919-515-7832.

E-mail addresses: stephane.jobic@cnrs-imn.fr (S. Jobic),

mike_whangbo@ncsu.edu (M.-H. Whangbo).

lized by separating O^{2-} anions with counter cations (e.g., Na_xCoO₂, K_{0.3}MoO₃, etc.) or by use of transition elements with high oxidation state (e.g., MoO₃, V₂O₅, etc.) [4]. Thus, it is understandable that TiO₂ has only a 3D structure because of the large electronegativity difference between Ti and O (1.54 vs. 3.44). The driving force to adopt a 3D structure would be weaker in PtO₂ due to the smaller electronegativity difference between Pt and O (2.28 vs. 3.44). Nevertheless, one may wonder why PtO₂ can have a 2D layered structure despite the expected enhancement of anion–anion repulsion. It should be noted that a CdI₂-type layered structure is also found for metastable CoO₂ and NiO₂ phases obtained by electrochemical deintercalation of lithium from LiNi_{1-x}Co_xO₂ [5,6].

The electronic structures and chemical bonding of rutile-type compounds have been analyzed on the basis of electronic band structure calculations [7]. There are several 3D polymorphs of a transition metal binary oxide MO_2 , which include the rutile-, CaCl₂-, marcasiteand anatase-type phases. The relative stabilities of these 3D polymorphs and the mechanism for the phase transition between them are important issues. Answers to these questions have been provided for a few oxides in terms of electronic band structure studies [8,9]. In the present work, we probe why both rutile- and CdI₂-type (i.e., 3D and 2D) structures are possible for PtO₂ while the CdI₂-type structure is not feasible for TiO₂ on the basis of first principles electronic structure calculations.

⁴⁴³²² Nantes Cedex 03, France

^{0022-4596/03/\$ -} see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-4596(03)00323-2

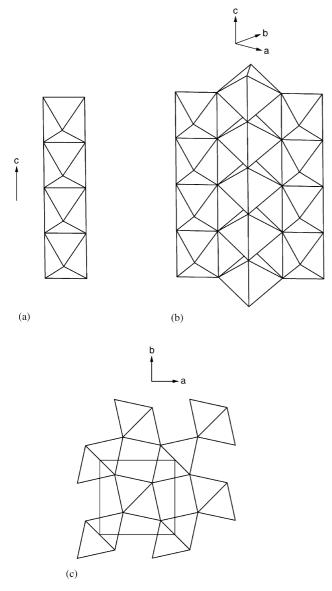


Fig. 1. Rutile-type MO_2 structure: (a) Schematic polyhedral view of a single MO_4 chain made up of edge-sharing MO_6 octahedra. (b) Schematic polyhedral view of how MO_4 chains condense in the rutile-type structure of MO_2 . (c) Projection view of MO_4 chains along the chain direction.

To gain insight into what electronic features are responsible for the structural and electronic difference between PtO_2 and TiO_2 , we then analyze the orbital interactions between the transition metal *d*- and oxygen *p*-orbitals.

2. Calculations

The cell parameters and the atom positions for the rutile- and CdI_2 -type structures of PtO_2 and TiO_2 were optimized on the basis of electronic band structure calculations using the Vienna ab initio simulation

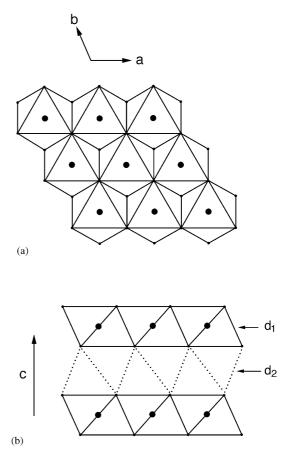


Fig. 2. CdI_2 -type MO_2 structure: (a) Schematic projection view of a single MO_2 layer along the *c*-direction. (b) Schematic perspective view of adjacent MO_2 layers in the CdI₂-type structure of MO_2 .

package (VASP) [10–12], which is based on the density functional theory within the local-density approximation. The present VASP calculations employed the projector augmented wave method [13], a finite temperature density functional approximation, an optimized mixing routine and a conjugate gradient scheme. All calculations were performed using the generalizedgradient approximation [14].

First principles full potential linearized plane wave (FP-LAPW) calculations with non-spin polarization were carried out for the rutile and CdI₂ structures of PtO₂ and TiO₂ (determined from the VASP calculations) using the WIEN2k program package [15] within the generalized-gradient approximation [16] for the exchange-correlation energy. We employed the muffin–tin radii of 2.32 au for Pt, 2.19 au for Ti, and 1.56 au for O. The basis set cut-off parameters were $G_{\text{max}} = 14 \text{ Bohr}^{-1}$ and $R_{\text{mt}}K_{\text{max}} = 7$ (G_{max} controls the plane wave cut-off used in the charge density Fourier expansion, and $R_{\text{mt}}K_{\text{max}}$ defines the plane wave basis set used to describe the wave function outside the muffin–tins). Integrations over the irreducible wedge of

the Brillouin zone were performed using a 2500k-point regular mesh.

3. Results

The structural data determined by VASP calculations are summarized in Table 1a-d, where the experimental values of the cell parameters and atom coordinates of the observed structures of PtO₂ and TiO₂ are given in parentheses. The structures optimized by VASP calculations are in good agreement with the available experimental data. It is noted that in Ref. [1], the *z* coordinate of O in α -PtO₂ was not experimentally determined but was arbitrary fixed at $\frac{1}{4}$.

The relative energies of the rutile- and CdI_2 -type structures for PtO_2 and TiO_2 (per formula unit) determined by VASP calculations are listed in Table 2, which also lists the relative energies determined by FP-LAPW calculations for the structures obtained from

Table 1

Crystal structures of the rutile- and CdI_2 -type structures of PtO_2 and TiO_2 determined by VASP calculations^a

(a)Rutile-type PtO₂^b

SG: *Pnnm*; a = 4.5986 (4.488) Å, b = 4.5717 (4.533) Å, c = 3.1910 (3.138) Å

Atom coordinates: Pt (0, 0, 0); O (0.2571 (0.2670), 0.3633 (0.3500), 0)

(b) CdI₂-type PtO₂^c

SG: $P\bar{3}m1$; a = 3.1644 (3.100) Å, c = 4.3241 (4.161) Å Atom coordinates: Pt (0, 0, 0); O (1/3, 2/3, 0.2190 (0.25^d))

(c) Rutile-type TiO_2^e

SG: $P4_2/mnm$; a = 4.6536 (4.5937)Å, c = 2.9713 (2.9587)Å Atom coordinates: Ti (0,0,0), (1/2, 1/2, 1/2); O (x, x, 0), (1/2 + x, 1/2 - x, 1/2) with x = 0.3044 (0.30499)

(d) CdI2-type TiO2

SG: $P\bar{3}m1$; a = 2.9962 Å, c = 5.0806 Å

Atom coordinates: Ti (0,0,0); O (1/3,2/3,0.1923)

^a The experimental values are given in italics in parentheses.

^bThe experimental structure was taken from Ref. [2].

^cThe experimental structure was taken from Ref. [1].

^dThe assumed value.

^eThe experimental structure was taken from Ref. [3].

Table 2

Relative energies (eV) per formula unit determined by VASP and WIEN2k calculations for the rutile- and CdI₂-type structures of PtO_2 and TiO_2^a

Compound	Structure type	VASP	WIEN2k
PtO ₂	Rutile	0.000	0.000
	CdI ₂	0.067	0.013
TiO ₂	Rutile	0.000	0.000
	CdI ₂	0.339	0.350

^a For each compound, the energy of the rutile structure was taken as the reference.

VASP calculations. The rutile- and CdI₂-type structures are almost equally stable for PtO_2 (the energy difference lies within the computational error, which is estimated to be about 10 meV/atom), but the rutile structure is considerably more stable than the CdI₂-type structure for TiO₂. These results are consistent with the experimental observations that PtO_2 has the CdI₂- and rutiletype structures, while TiO₂ has only the rutile structure.

Fig. 3 shows the total density of states (DOS) and the partial DOS of the metal *d*-orbitals obtained for the rutile- and CdI₂-type structures of TiO₂ using FP-LAPW calculations. The corresponding DOS plots for the rutile- and CdI₂-type structures of PtO₂ are shown in Fig. 4. In capturing the essential features of these DOS plots, it is convenient to consider the oxidation states of the metal atoms. With the oxidation state O^{2-} for oxygen, the oxidation states for platinum and titanium are given by Pt⁴⁺ (*d*⁶) and Ti⁴⁺ (*d*⁰), respectively. This ionic electron counting scheme predicts that both the t_{2g} - and e_g -block bands are empty in TiO₂, and that the t_{2g} -block bands are consistent with the total and partial DOS plots shown in Figs. 3 and 4.

Fig. 3 shows that the t_{2g} - and e_g -block bands of TiO₂ are well separated in energy in the CdI₂-type structure, but almost overlap in the rutile structure because they are wider in the rutile structure than in the CdI₂-type structure. The DOS for the occupied bands of TiO₂ is wider and has a more even distribution in the rutile structure than in the CdI₂-type structure than in the CdI₂-type structure than in the CdI₂-type structure than in the rutile structure than in the CdI₂-type structure.

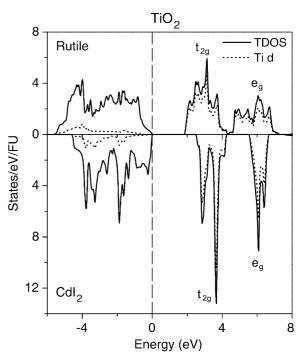


Fig. 3. Plots of the total DOS (solid line) and the Ti 3*d*-orbital contributions (dashed line) calculated for the rutile- and CdI_2 -type structures of TiO₂ obtained by FP-LAPW calculations.

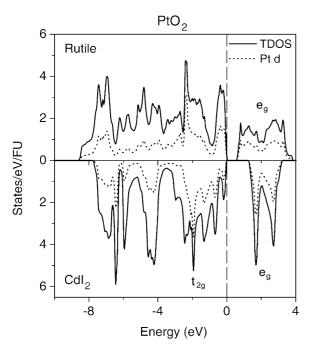


Fig. 4. Plots of the total DOS (solid line) and the Pt 5*d*-orbital contributions (dashed line) calculated for the rutile- and CdI_2 -type structures of PtO₂ obtained by FP-LAPW calculations.

that the e_g -block bands of PtO₂ are wider in the rutiletype structure than in the CdI₂-type structure. The DOS for the occupied bands of PtO₂ is wider and has a more even distribution in the rutile structure than in the CdI₂type structure. For the CdI₂-type structure of PtO₂, the t_{2g} -block bands can be assigned to the energy region between -3 and 0 eV. Such an assignment is not possible for the rutile-type structure of PtO₂, because the *d*orbital contribution is more evenly distributed in the occupied energy region and because the oxygen s/pblock bands are merged with the platinum t_{2g} -block bands. It is clear from the DOS curves of Figs. 3 and 4 that the mixing between the metal *d*-orbitals and the oxygen s/p-orbitals is much stronger in PtO₂ than in TiO₂.

4. c/a ratios for the CdI₂-type structures of $MO_2(M = Ti, Pt)$

Some geometrical parameters for the CdI₂-type structures of MO_2 (M=Ti, Pt) are summarized in Table 3. Our calculations reproduce the low c/a ratio of PtO₂ (~1.34), and the high c/a ratio (~1.67) expected for TiO₂ on the basis of hexagonal close packing of O²⁻ anions. These results are consistent with the experimental observations for the corresponding layered sulfides, i.e., c/a = 1.42 for PtS₂ [17] and c/a = 1.67 for TiS₂ [18]. Our recent study [19] showed that the small c/a value in the CdI₂-type PtO₂'s and dichalcogenides

Pt Q_2 (Q = O, S, Se, Te) is primarily caused by the overlap repulsion between the in-plane *np*-orbitals of Q within each sheet of the ligand atoms Q, i.e., the two-orbital four-electron destabilizing orbital interaction [20] between the filled in-plane *np*-orbitals. Thus, a smaller Pt-Q bond results in a smaller c/a ratio [19].

To understand the large difference in the c/a ratios of TiO₂ and PtO₂, we examine the intra-layer O···O (between sheets of oxygen atoms) distance d_1 and the inter-layer O···O distance d_2 Fig. 2, Table 3. The d_1/a ratios of TiO₂ and PtO₂ are both smaller than 1 (i.e., 0.869 and 0.832, respectively), namely, both TiO₆ and PtO₆ octahedra are squashed along the *c*-axis. The extent of this flattening is only slightly larger in PtO₂. However, the d_2/a ratio is much larger in TiO₂ than in PtO₂ (i.e., 1.208 vs. 0.961). Thus, the primary cause for the large c/a ratio of TiO₂ and the small c/a ratio of PtO₂ lies in the fact that the inter-layer O···O distance

Table 3

Geometrical parameters in the CdI₂-type structures of MO_2 (M = Ti, Pt) obtained by VASP calculations^a

	TiO ₂	PtO ₂
М-О	1.984	2.058
a	2.996	3.164
d_1 (intra-layer O····O)	2.602	2.632
d_2 (inter-layer O····O)	3.582	3.040
c/a	1.696	1.366
d_1/a	0.869	0.832
d_2/a	1.208	0.961

^a Lengths are given in Å.

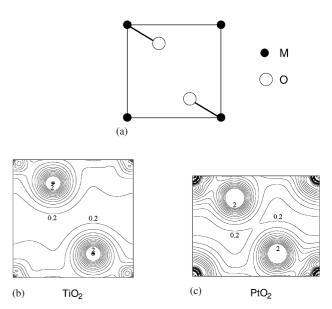
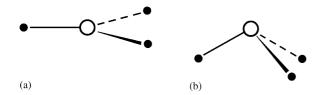
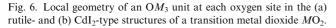


Fig. 5. (a) Schematic diagram shown a cross-section plane of the CdI₂type structure of MO_2 (M = Ti, Pt) that is parallel to the (110) plane and contains M-O bonds. The contour plots of the valence electronic density distribution on this plane calculated for TiO₂ and PtO₂ are shown in (b) and (c), respectively. The contour values vary from $0.2 e^{-}/Å^{3}$ to $2.0 e^{-}/Å^{3}$ with the interval of $0.15 e^{-}/Å^{3}$.


 d_2 is large in TiO₂, but small in PtO₂. To account for this difference, we recall that the Ti–O bond is more strongly ionic than is the Pt–O bond. In terms of electron density distribution, the anionic character of oxygen is much stronger in TiO₂ than in PtO₂. Consequently, the anion-anion repulsion between adjacent sheets of O atoms is stronger in TiO₂ than in PtO₂, so that the CdI₂-type structure of TiO₂ has a larger interlayer spacing and hence a larger c/a ratio. Fig. 5 compares the valence


electron density distribution in the CdI₂-type structures of TiO₂ and PtO₂. As expected from the above discussion, Fig. 5 shows that each Pt–O bond has a stronger covalent character than does each Ti–O bond, and the oxygen atom has a stronger ionic character in TiO₂ than in PtO₂.

5. Structural preference and orbital interactions

We now analyze the differences in the structural preference of PtO2 and TiO2 from the viewpoint of interactions between the metal *d*-orbitals and the oxygen *p*-orbitals. In the rutile-type structure, each oxygen atom and its three adjacent metal atoms form an OM_3 triangle with oxygen at the center Fig. 6a in which $\angle M - O - M = 98.2^{\circ}$ and 130.9° (×2) from the structure optimized by the VASP calculations for β -PtO₂. In the CdI₂-type structure, each oxygen atom and its three adjacent metal atoms form an OM_3 trigonal pyramid with oxygen at the apex Fig. 6b in which $\angle M - O - M = 99.7^{\circ}$ (\times 3) from the structure optimized by the VASP calculations for α -PtO₂. This structural difference in the local structures around each oxygen atom has a profound consequence on the metal-ligand bonding and structural preference in PtO₂ and TiO₂.

For simplicity, let us suppose that a given trigonal planar OM_3 unit of the rutile-type structure Fig. 6a is contained in the *xy*-plane with one O-*M* bond aligned along the *x*-axis as shown in Fig. 7. Then the *xz*-orbital of *M* has a strong π -interaction with the *z*-orbital of O Fig. 7a, the *xy*-orbital of *M* has a strong π -interaction with the *y*-orbital of O Fig. 7b, and the x^2-y^2 -orbital of *M* has a strong σ -interaction with the *x*-orbital of O Fig. 7c. By symmetry, the z^2 - and *yz*-orbitals of *M* cannot interact with the *p*-orbitals of O Figs. 7d and e. The occurrence of such strong π - and strong

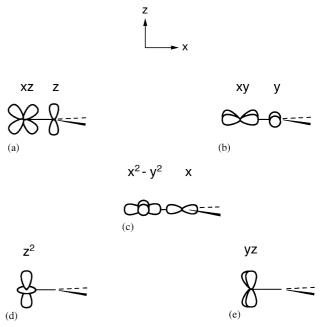


Fig. 7. Overlap between the *d*-orbitals of M and *p*-orbitals of O in the rutile-type structure of MO_2 .

 σ -interactions is energetically favorable when they are two-orbital two-electron stabilizing interactions [15], namely, when the *d*-orbitals of d^0 ions interact with the *p*-orbitals of O^{2-} ions. This is the case for the rutile structure of TiO₂. In the trigonal pyramidal OM_3 geometry of the CdI₂-type structure Fig. 6b, each dorbital of *M* can interact with one of the *p*-orbitals of O due to the lowering of the symmetry. The π -interactions involving the xz- and xy-orbitals of M are strongly reduced in strength, and so is the σ -interaction involving the $x^2 - y^2$ -orbital of M. The z^2 -orbital of M will gain weak σ -interactions with the z and x-orbitals of O, and the *yz*-orbital of M a weak π -interaction with the y-orbital of O. All these interactions are stabilizing for the case of TiO_2 . However, the overall strength of the two-orbital two-electron stabilizing interactions should be much stronger in the rutile structure than in the CdI₂type structure, because TiO_2 is much more stable in the rutile structure than in the CdI₂-type structure in terms of total energy calculations.

From the viewpoint of the ionic electron counting scheme, each Pt^{4+} ion of PtO_2 has six *d*-electrons so that not all the orbital interactions of the Pt^{4+} ion *d*-orbitals with the O^{2-} ion *p*-orbitals are stabilizing interactions. In the case of the trigonal planar OM_3 geometry of the rutile-type structure Fig. 6a, it should be noted that the π -interactions of Figs. 7a and b lead to the t_{2g} -block bands, and the σ -interaction of Fig. 7c to the e_g -block bands. In the case of PtO_2 , the t_{2g} -block bands are filled while the e_g -block bands are empty. Therefore, the two π -interactions of Figs. 7a and b become two-orbital four-electron destabilizing interactions [20], while the σ -interaction of Fig. 7c is a two-orbital two-electron stabilizing interaction. When the local geometry around oxygen is converted to the trigonal pyramidal OM_3 geometry of the CdI₂-type structure Fig. 6b, the two-orbital four-electron destabilizing π -interactions of Figs. 7a and b are significantly weakened in strength, and so is the two-orbital two-electron stabilizing σ interaction of Fig. 7c. In addition, the z^2 -orbital of Pt⁴⁺ will induce weak σ -interactions (stabilizing) with the xand z-orbitals of O^{2-} , and the yz-orbital of Pt^{4+} a weak π -interaction (destabilizing) with the y-orbital of O^{2-} . Namely, PtO₂ has strong destabilizing π - and strong stabilizing σ -interactions in the rutile-type structure, while these interactions are reduced in strength in the CdI₂-type structure. Therefore, there will be no strong structural preference between the rutile- and CdI₂-type structures in the case of PtO₂. This is consistent with the experimental and theoretical observations.

Finally, it is noted that the DOS for the occupied bands of TiO₂ is wider, and the t_{2g} - and e_g -block bands of TiO₂ are wider, in the rutile structure than in the CdI₂-type structure because the π - and σ -interactions are stronger in the rutile-type structure Fig. 3. The same is also found for PtO₂ Fig. 4. The energy difference between the Pt 5d- and O 2p-orbital is smaller than that between the Ti 3d- and O 2p-orbitals, so that the orbital interactions between them are stronger in PtO₂. This explains why the partial DOS for the Pt 5d-orbitals is distributed almost evenly in the occupied region.

6. Concluding remarks

Our first principles electronic structure calculations reveal that the rutile- and CdI₂-type structures are almost equally stable for PtO_2 , but the rutile structure is considerably more stable than the CdI₂-type structure for TiO₂. These results are consistent with the available experimental observations. Our analysis of orbital interactions shows that PtO₂ has strong destabilizing π - and strong stabilizing σ -interactions in the rutile-type structure, and both interactions are reduced in strength in the CdI₂-type structure such that there is no strong structural preference between the rutile- and CdI₂-type structures in the case of PtO_2 . The primary cause for making the CdI₂-type structure accessible for PtO₂ is that the t_{2q} -block levels of each transition metal ion are occupied. A similar situation occurs in the metastable NiO_2 and CoO_2 phases obtained by the electrochemical deintercalation of lithium from $LiNi_{1-x}Co_xO_2$, which are found to crystallize in the CdI₂-type layered structure. The c/a ratio of the CdI₂-type structure is much larger in TiO₂ than in PtO₂ because the anionic character of oxygen is much stronger in TiO₂ than in PtO₂ so that the anion-anion repulsion between adjacent sheets of O atoms is stronger in TiO₂ than in

PtO₂. Thus, the present work indicates that the stabilization of lamella oxides of transition element is feasible if the M-O bond is substantially covalent, which occurs for late transition elements. As discussed above, such oxides have a delicate balance between metal-oxygen and oxygen-oxygen orbital interactions, and hence their synthesis would require soft chemistry routes.

Acknowledgments

Work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under Grant DE-FG02-86ER45259. The authors are grateful to North Carolina Supercomputer Center for the generous computer time.

References

- H.R. Hoekstra, S. Siegel, F.X. Gallagher, Adv. Chem. Ser. 98 (1971) 39.
- [2] K.-J. Range, F. Rau, U. Klement, A.M. Heyns, Mater. Res. Bull. 22 (1987) 1541.
- [3] K. Sugiyama, Y. Takeuchi, Z. Kristallogr. 194 (1991) 305.
- [4] J. Rouxel, T. Bein (Ed.), Supramolecular architecture: synthetic control, in: Thin Films and Solids ACS Symposium Series, Vol. 499, American Chemical Society, Washington, DC, 1992, pp. 88–113.
- [5] J.M. Tarascon, G. Vaughan, Y. Chabre, L. Seguin, M. Anne, P. Strobel, G. Amatucci, J. Solid State Chem. 147 (1999) 410.
- [6] L. Croguennec, C. Pouillerie, A.N. Mansour, C. Delmas, J. Mater. Chem. 11 (2001) 131.
- [7] P.I. Sorantin, K. Schwarz, Inorg. Chem. 31 (1992) 567.
- [8] J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson Jr., J.V. Smith, J. Am. Chem. Soc. 109 (1987) 3639.
- [9] R. Wu, W.H. Weber, J. Phys.: Condens. Matter 12 (2000) 6725.
- [10] G. Kresse, J. Furthmüller, Vienna Ab-initio Simulation Package (VASP), Institut für Materialphysik, Universität Wien, Austria. See also: http://cms.mpi.univie.ac.at/VASP/.
- [11] G. Kresse, J. Furthmüller, Comput. Sci. 6 (1996) 15.
- [12] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
- [13] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953;
 G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
- [14] J.P. Perdew, Y.Y. Wang, Phys. Rev. B 33 (1986) 8800.
- [15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2. See also: http://www.wien2k.at/
- [16] J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [17] S. Furuseth, K. Selte, A. Kjekshus, Acta Chem. Scand. 19 (1965) 257.
- [18] R.R. Chianelli, J.C. Scanlon, A.H. Thompson, Mater. Res. Bull. 10 (1974) 1379.
- [19] T.A. Albright, J.K. Burdett, M.-H. Whangbo, Orbital Interactions in Chemistry, Wiley, New York, 1985 (Chapter 2).
- [20] D. Dai, H.-J. Koo, M.-H. Whangbo, C. Soulard, X. Rocquefelte, S. Jobic, J. Solid State Chem. 173 (2003) 114.